Development and application of mine site reclamation methods to control acid generation in Canada

By: Bruno Bussière, Ph.D., P. Eng, UQAT
Michel Aubertin, Ph.D., P. Eng., Polytechnique
Introduction
Two main types of wastes: waste rock and tailings

Specific impoundments created using natural topography and dykes

Tailings – pumped to tailings impoundment

Aubertin et al., 2002
Introduction

• Main potential environmental impacts:
 – Physical stability problem (not discussed here)
 – Chemical stability problem: acid mine drainage (AMD)

• What is AMD?
 – Water flowing through mine wastes – affected by natural bio-geochemical phenomena
 – Two main reactions:
 • oxidation by sulphide minerals (ex. pyrite, pyrrhotite, arsenopyrite)
 • neutralization by carbonates (calcite, dolomite) and some silicate minerals

Aubertin et al., 2002
Introduction

• How can we control the AMD problem?
• By reducing the availability of one (or more) of the three ingredients (sulphide, water, and oxygen), or by controlling tailings temperature

• Different methods have been developed:
 – Oxygen barriers
 – Water infiltration barriers
 – Desulphurization
 – Thermal barriers
Oxygen barriers
- Water covers
- Elevated water table (EWT) with monolayer cover
- Covers with Capillary Barrier Effects (CCBE)
Oxygen barriers – water covers

• Use of water covers

 Objective: to limit O$_2$ migration - water is an excellent barrier (diffusion coefficient is 10^4 less in water than in air)

 Challenge: long term stability of the dykes, old tailings

Applied with success at many sites (ex. Louvicourt, Solbec, etc.)
Oxygen barriers – water covers

Subaqueous disposal = good performance to control AMD

Awoh, 2009

Don Rouyn, Rouyn, Qc, Can

Louvicourt, Val-d’Or, Qc, Can

MEND MANUAL
VOLUME 1 – SUMMARY
MEND 5.4.2a
Oxygen barriers – water covers

Flooding after tailings oxidation (ex. Quirke; Solbec)

- Interactions between the contaminated pore water and the water cover.
- Progressive improvement of water quality.
- A diffusion barrier can reduce the influence of prior water contamination

Solbec (Québec)
Oxygen barriers – EWT and monolayer cover

- Use of a monolayer cover combined with an elevated water table (EWT)

Reduce water loss by ET

- Objective: Maintain AMD tailings saturated at all times (low O_2 concentration)

Bussière, 2007
Oxygen barriers – EWT and monolayer cover

Flux of O$_2$ that reach the Manitou tailings < 2 moles/m2/yr

Manitou, Val-d’Or, Qc, Can

Ethier et al., 2013
Oxygen barriers – Cover with Capillary Barrier Effects (CCBE)

O$_2$

Oxygen barriers

Cover with Capillary Barrier Effects (CCBE)

Aubertin et al., 1995

Mbonimpa et al., 2002

$F_0^D (z,t) = -D_e \frac{\partial C(z,t)}{\partial z}$

Effective diffusion coefficient, D_e (m2/s)

Saturation degree, S_r (-)

Experimental data

Collin (1987) model; for $n=0.40$

Proposed model ($p_a = p_w = p = 3.3$) for $n=0.40$
Oxygen barriers – CCBE at Lorraine site

- CCBE built on the tailings
- Instrumentation installed in the cover layers
- 3 dolomitic drains (Dol-1, Dol-2 and Dol-3)
- 1 limestone drain (Cal-1) – No AMD at this drain

Bussière et al., 2009
Oxygen barriers – CCBE at Lorraine site

Before

After

Instrumentation

NSERC Industrial Chair on Environment and Mine Waste Management
Oxygen barriers – CCBE at Lorraine site

– Steady-state oxygen flux were calculated using Fick’s first law and \(D_e \) estimated from volumetric water content measurements

The CCBE is effective as oxygen barrier
Water infiltration barriers
- Low saturated hydraulic conductivity covers
- Store-and-release cover (not discussed)
Covers made of low k_{sat} materials

- Low k_{sat} materials (double liner is usually recommend): natural and/or geosynthetics

- Challenge: stop water infiltration in the long term (not easy in humid climates)

Applied at abandoned sites in Quebec: Poirier, Aldermac, Barvue, Normétal
Covers made of low \(k_{sat} \) materials

Maurice et al., 2002

Poirier site, Joutel, Qc, Canada

- Geomembrane (HDPE) on a geotextile directly on tailings
- Protected by a 1m till layer (sand and gravel)

- No long term monitoring data available
- Drop of water table, but still contaminated effluent
Desulphurization
Desulphurization

• Concentrate:
 – To paste backfill plant
 – To a specific portion of the tailings impoundment

• Desulphurized tailings:
 – Can be used as construction material

Concept: reduce the mass of problematic tailings at the mill and to re-use the non problematic portion

Bois et al., 2004
Desulphurization

• Main uncertainties:
 – New way of managing tailings
 – Desulphurization cost (0.15 to 0.75$/t)
 – The level of desulphurization needed

Bois et al., 2004
Desulphurization

Manitou site
- Use of the desulphurized Goldex tailings as cover material
- Combined with an EWT

Agnico-Eagle Mines Ltd
Desulphurization

- Option: Desulphurized Westwood tailings to produce cover material
- Combined with an EWT
- Evaluated at intermediate scale in the field

Rey et al., 2016
Thermal barriers
Thermal barriers

NRCan web site
Thermal barriers

- Integrate tailings within the permafrost by adding a cover of inert material
- Low temperature in the reactive tailings will:
 - slow down both chemical and biological oxidation reactions
 - reduce the generation and migration of pollutants (Holubec, 1993)
- Target tailings temperature
 - tailings can still oxidize at temperature below 0°C (-2°C; Meldrum et al., 2001; -4°C; Elberling, 2001)

Soil temperature profile in continuous permafrost zone (modified from Andersland and Ladanyi, 2004)
Thermal barriers

T° and θ at the tailings interface

![Graphs showing temperature and unfrozen volumetric water content over time]

Coulombe, 2012
Conclusion

• Reclamation = control the AMD formation
• Different options – site specific (no panacea)
• Each technique has his own challenges
 – Water cover – dyke stability and prior contamination
 – CCBE, EWT and thermal covers – Climate change
 – Geomembrane covers – durability, physical stability
 – Desulphurization – production of a non-problematic desulphurized tailings
• R&D is essential to improve existing reclamation approach
A UNIQUE PARTNERSHIP FOR PRACTICAL AND SUSTAINABLE SOLUTIONS