Objectives and Design Solutions of a 1000-year Evapotranspiration-Capillary Surface Barrier System

Z. FRED ZHANG, DAWN M. WELLMAN

Pacific Northwest National Laboratory

2017 National Meeting of the American Society of Mining and Reclamation, Morgantown, WV

What’s Next for Reclamation? April 9 - 13, 2017
Background - Surface mining

- Alters the vegetation, soils, bedrock, and landforms
- Changes the surface hydrology, groundwater, and flow paths

- Changes ecology of the site
Surface Mining - Problems

- **Surface**
 - Loss of vegetation
 - Loss of soil
 - Erosion
 - Runoff
 - Stream pollution

- **Subsurface**
 - Acid drainage
 - Groundwater contamination
Surface Barrier (Cover, Cap)

- covers the exposed rocks
- isolates rockpile/tailing
- reduces erosion
- provides a medium for vegetation growth
- reduces drainage
Soil covers for tailings impoundments, waste rock piles, backfilled pits and heap leach pads (Rykaart et al. 2006)

<table>
<thead>
<tr>
<th>Continent</th>
<th>Country</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>Canada</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>United States</td>
<td>85</td>
</tr>
<tr>
<td>South America</td>
<td>Brazil</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chile</td>
<td>2</td>
</tr>
<tr>
<td>Africa</td>
<td>South Africa</td>
<td>13</td>
</tr>
<tr>
<td>Europe</td>
<td>Sweden</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>United Kingdom</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Germany</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>France, Czechoslovakia</td>
<td>1 each</td>
</tr>
<tr>
<td></td>
<td>Greece, Norway, Spain</td>
<td>1 each</td>
</tr>
<tr>
<td>Australia</td>
<td>Australia</td>
<td>18</td>
</tr>
<tr>
<td>Asia</td>
<td>Indonesia</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>
Barrier Design Challenges

Regulatory requirements

- Compliance
- Rules
- Regulations
- Guidelines

Recharge Control

Wind Erosion

Water Erosion

Animal Intrusion

Plant Intrusion

Human Intrusion

Waste isolation

Maintenance
Objectives

- Introduce performance objectives and the design solutions for a long-term (1000 yr) surface barrier
- Evaluate the performance of the surface barrier after a demonstration of 20 years

The 2000-Year-Old Man-Made Grave Creek Mound in the Ohio River Valley, WV

10000-Year–Old Iceberg Deposited Mound (Berggmounds)
Performance Objectives of a Surface Barrier over a Nuclear Waste Site

Objectives

#1 Meet or exceed RCRA criteria
#2 Function in a semiarid to subhumid climate
#3 Limit drainage to less than 0.5 mm yr\(^{-1}\)
#4 Limit runoff
#5 Minimize erosion
#6 Minimize biotic intrusion
#7 Have a design life of 1000 years
#8 Be maintenance free
Objective #1: Meet or exceed RCRA criteria
- thickness > 0.91 m;
- design life: 30 years;
- conductivity: <32 mm/yr

Design Solution
- thickness of 4.5 m;
- design life of 1000 year;
- drainage rate < 0.5 mm/yr
- containing a coated asphalt concrete (AC)
Objective #2:
- Function in a semiarid to subhumid climate

Design Solution:
- Use a ETC barrier with 2-m-thick silt loam
- The compacted clay barrier may not work

AI = P/PET

<table>
<thead>
<tr>
<th>Classification</th>
<th>Aridity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperarid</td>
<td>AI < 0.05</td>
</tr>
<tr>
<td>Arid</td>
<td>0.05 < AI < 0.20</td>
</tr>
<tr>
<td>Semi-arid</td>
<td>0.20 < AI < 0.50</td>
</tr>
<tr>
<td>Dry subhumid</td>
<td>0.50 < AI < 0.65</td>
</tr>
</tbody>
</table>
Objective #3:
- Minimize drainage rate to <0.5 mm/yr

Design solution:
- 2-m thick ET barrier
- Capillary break
- 2% slope of barrier surface
Objective #4: Limit runoff

Design solutions

- Use soil with sufficient large permeability

Warden silt loam

\[K_s = 36 \text{ mm/hr} \]
Objective #5: Minimize erosion

Design solution

- 15% gravel mix
- vegetation
Objective #6: Minimize biotic intrusion

Design solutions

- 1.5-m riprap layer
- asphalt concrete layer
Objectives and Solution - 7

- **Objective #7**: Have a design life of 1000 years
- **Objective #8**: Be maintenance free

Design solution

- **Use natural materials for barrier construction**: soil and rock
- **Establish a natural ecological system**: ETC Barrier
- **Include protective side slopes**
Barrier Design: 3D

Structure of the Prototype Hanford Barrier
Functions of Barrier Components

Silt Loam + Gravel:
- Vegetation growth
- Precipitation storage and release
- Erosion control

Riprap Side Slope:
- Intrusion control

Riprap layer:
- Intrusion control

Drainage Gravel:
- Promote lateral drainage

Compacted Soil
- Settlement control

Asphalt Concrete
- Drainage interception
- Noxious gas control

In Situ Soil

216-B-57 Waste Crib

2X vertical exaggeration
Tests

➢ Treatability test
 ▣ Irrigated the north section to about 3x the average precipitation (3x160 = 480 mm/yr)

➢ Controlled burn
 ▣ The north section was burned in Sept. 2008

➢ Monitoring: 1994 to 2013
Results: Soil Water Content Dynamics (10/95-3/96, irrigated)

- Soil became wetter
- Top 0.7 to 1 m was very wet
- Lower portion was still moist in late spring
- Water was diverted away from the center line

Click to play video
Soil Water Content Dynamics (4/96-10/96, irrigated)

- Soil became drier spring/summer
- Entire-soil profile became dry
- ET used up all the stored water

Click to play video
Summary - Design Barriers for Mine Lands

Determine barrier objectives

- Regulatory Requirements
 - Federal
 - State
- Functionality Requirements
 - Climate
 - Maximum drainage rate
 - Runoff control
- Longevity Requirements
 - Design life
 - Erosion control
 - Maintenance

Design surface barriers to achieve the objectives

- Type, Complexity